Software Defined Radio and

Digital Signal Processing

Cardiff University - November 7, 2018

Derek Kozel

Radio Amateur since second year of university
o UK Advanced license MWOLNA, US Extra KOZEL

e Moved from the San Francisco Bay Area to Cardiff in April 2017

e Bachelors and Masters in ECE & Public Policy at Carnegie Mellon University

e Worked at Range Networks, SpaceX, Ettus Research (NI)

e Currently a PhD at Cardiff University in the Centre for High Frequency Engineering
GNU Radio Project Officer

Electromagnetic Waves

° Electric and Magnetic energy

e Can bounce, bend, and generally confuse

electric ﬁeld>

direction
of
propagation

https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry_Textbook_Maps/Map%3A_Analytical_Chemistry_2.0_(Harvey)/10_Spectroscopic_Methods/10.1%3A_Overview_of_Spectroscopy

® Frequency

Properties of a wave

/\

A\
WA

https://en.wikipedia.org/wiki/Wavelength

e Amplitude

https://en.wikipedia.org/wiki/File:Sine_voltage.svg

o Number of cycles per second (Hertz) o The magnitude or strength of the wave
e Wavelength e Phase
o Distance between start and end of a cycle o The offset of the wave with respect to
another wave
Wavelength '

Y

https://en.wikipedia.org/wiki/Phase_(waves)

SGNURadio

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

A framework and set of libraries to build and run digital signal processing applications, primarily

software defined radio ones
Started in 2001

Libre and open source

Written in C++ and Python primarily

Available on Linux, Windows, and Mac

Used by a very wide variety of users
o commerical, hobbyist, government

e Contots | scaupeony coirs

voume: (1 ey saom Fretuingo EteRneting0 g v oen o]
-~ g ECI—— — o e,)
e s0s e (10w smanan (5 005 ot [15]
£ asc i O |t ecoring Flerame: reconingwov

Spectrogram

-
256 w67 08 %289 930 %01 902 903 9304 9305
requency (i)
Trace ope:
as L o T L} s
@ Average
20 g Al 01000
o s
= 5 pestene
1. fiidalisie=
fo [|| [sor)
£ ﬁ'/ || omece (s
50 :w‘ e
5 Wl » WW W"W"J e BA
A gl | et v [+
o0 £B
m—re—
5 e Gen 55 e s me sin e oo
Frequency (MHz) stop

http://superkuh.com/rtlsdr.html

GNU Radio Companion

01-wave_demo.grc - fhome/dkozel/Dropbox/Talks/Cardiff University 2017/Demos - GNU Radio Companion

Options.
1D: wave_demo
Title: Wave Demo

Generate Options: QT GUI

Sarie Raver QT Gl Time sink
vk Codoe Number of Points: 1.024k
ko i 5 Sample Rate: 32
1D: samp rate Frequency: 1k ot e
s Stem Plot: False
Offset: :

<<<Welcome to GNU Radio Companion 3.7.12git-295-ga0adcd33 >>>

Block paths:
/he /dk |/local/shar dio/grc/blocks

v

YYVYYYYYYTYTYTYVY

VYVYVYYVYVYVYTVYY

1
3

Audio

Boolean Operators
Byte Operators
Channelizers
Channel Models
Coding

Control Port
Debug Tools
Deprecated
Digital Television
Equalizers

Error Coding

FCD

File Operators
Filters

Fourier Analysis
GUI Widgets
Impairment Models
Instrumentation
Level Controllers
Math Operators
Measurement Tools

—

Wave Demo

Amplitude

i)

0.5

— Re{Data 0}

- Im{Data 0}

0.5

15
Time (ms)

Automatic Code Generation

The graphical Ul is generating Python code
o Or C++ in the latest version
We'll look quickly under the hood later

Data Types

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

e Samples and data comes in different digital formats

e Semantic differences Sample Rae: 52
o Complex vs Real samples :ﬁ%ﬁ;:sm
o Number vs Letters Offsat: 0

e Size differences e

. . Waveform: Cosine
o 8 b|t5 VS 32 bItS Frequency: 1k
Amplitude: 1
Offset: 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

out

>r (8-bit signed integer)

"""

Complex (2 x 32-bit floating point)

Float (32-bit floating point)

Int (32-bit signed integer)

Short (16-bit signed integer)

Data Types

Have to connect matching types
GRC will warn you if there’s a mismatch
In the end, bits are bits

Computer will interpret them as you tell it to

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

Throttle
Sample Rate: 32k

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

Throttle
Sample Rate: 32k

@ Types

6 Color Mapping

Complex Integer 16

Integer 64

Integer 16

Async Message
Bus Connection
Wildcard

_ Close

Time Domain

e Amplitude values over time
e Signals are continuous in the air or wire
e Signals are digitized by sampling the current value many times

5555555555
Time(ms) . Time(ms)

Continuous Signal (it’s a lie!) Discrete (sampled) Signal

e Setup a flowgraph with controls for

o

@)
@)

Delay value:

Exploring Waves

Phase
Frequency
Amplitude

QT GUI Range
ID: ch2 phase
Label: Channel 2 Phase
Default Value: 180
Start: 0

Stop: 360

Step: 1

QT GUI Range
ID: ch2_amplitude
Label: Channel 2 Amplitude
Default Value: 1

Start: 0

Stop: 2

Step: 10m

QT GUI Range
ID: ch2_frequency
Label: Channel 2 Frequency
Default Value: 16

Start: 0

Stop: 1k

Step: 1

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 16
Amplitude: 1
Offset: 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 16
Amplitude: 1
Offset: 0

int ((samp rate/ch2 frequency) *

Throttle
Sample Rate: 32k

Delay

Sample Rate: 32k

Autoscale: No

Delay: 1k

Stem Plot: False

QT GUI Time Sink
Number of Points: 1.024k

(ch2 phase/360.0))

Throttle Block

GNU Radio will process data as fast as possible

Hardware (Analog to Digital or Digital to Analog converters) will have a set sample rate
Simulation only doesn’t

Add one (and only one!) throttle block to the flowgraph
o Has a timer inside that tries to match the average throughput to the sample rate

Delay value:
int ((samp rate/ch2 frequency)

* (ch2 phase/360.0))

QT GUI Range
ID: ch2_phase

Label: Channel 2 Phase

Default Value: 180
Start: 0

Stop: 360

Step: 1

QT GUI Range
ID: ch2_amplitude
Label: Channel 2 Amplitude
Default Value: 1
Start: 0
Stop: 2
Step: 10m

QT GUI Range
ID: ch2_frequency
Label: Channel 2 Frequency
Default Value: 16
Start: 0
Stop: 1k
Step: 1

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 16
Amplitude: 1
Offset: 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 16
Amplitude: 1
Offset: 0

Throttle
Sample Rate: 32k

Delay
Delay: 1k

waveform_demo.grc

QT GUI Time Sink
Number of Points: 1.024k

Sample Rate: 32k
Autoscale: No
Stem Plot: False

® © Properties: QT GUI Time Sink
General Trigger Config Advanced Documentation

Discrete Sampling .

Control Panel No ~

Legend Yes ~

Axis Labels Yes ~
e Usually data is displayed as if it were continuous Stem Plot Yes v
o Easier to visualize
o Mostly accurate as long as you follow Nyquist’s Sampling Law
e Can also display actual data points
o Select Stem Plot under the Config menu in QT GUI Time Sink
Options Variable
ID: top_block ID: samp_rate Stem p|ot g rc
Generate Options: QT GUI | | Value: 32k - ’

Signal Source
Sample Rate: 32k QT GUI Time Sink
Waveform: Cosine l Throttle Number of Points: 64
D Frequency: 1k # Sample Rate: 32k _ ! I Sample Rate: 32k
Amplitude: 1 Autoscale: No
Offset: 0

- Re{Data 0}
- Im{Data 0}

Complex Sampling

Amplitude
o

Hard to make fast ADC/DACs
e Also ambiguities in frequency are real(ly painful)

e When mixing a signal with a sinewave crossing zero you : E i E :
lose all the information!
e Solution: Split the signal in two, mix with a sine and

cosine, sample each result at the same time

o Twice the information, all of it useful

o Not cheating Nyquist

o Bandwidth = Sample Rate signal Source
Sample Rate: 32k QT GUI Time Sink
Waveform: Cosine I Throttle Number of Points: 64
Frequency: 1k Sample Rate: 32k Sample Rate: 32k
Amplitude: 1 Autoscale: No
Offset: 0

stem_plot.grc

/1

Frequency Domain

-20

' f -40
of 80

[-100

120

140

Time Domain Frequency Domain
ﬁ q 4
s(t) S(w)

Relative Gain (dB)
o
o

https://irenevigueguix.wordpress.com/2017/02/06/understanding-the-fourier-transform/

e Time domain signals contain energy at certain frequencies

e They can be decomposed into the sum of many sine waves with different amplitudes

1.00 kHz,-13.63 dB

T

= A U L
2.00 4.00 6.00

" —
8.00 10.00 12.00 14.00
Frequency (kHz)

X 1
16.00

Frequency Sink

QT GUI Range
ID: freq frequency_plot.grc
Label: Tone Frequency
Default Value: 0

Variable Start: -1M
ID: samp_rate Stop: 1M
Value: 1M Step: 1

Signal Source =
T GUI F S
Sample Rate: 1M Q requency Sink

: ...mpl ignal
Waveform: Cosine Throttle Name_ SPECHNL - mprex Sigue
M —» : [l FFT size: 4.006k

Frequency: 0 Sample Rate: 1M

< £ Center Frequency (Hz): 0
Rmpitode: Bandwidth (Hz): 1M
Offset: 0

Simple Receiver

Options
ID: top_block
Generate Options: QT GUI

Variable
ID: samp_rate
Value: 5M

basic_rx.grc

QT GUI Range
ID: rx_freq
Label: Receive ...uency (MHz)
Default Value: 100
Start: 70
Stop: 3k
Step: 1

Label:

QT GUI Range
ID: rx_gain

Default Value: 700m
Start: 0

Stop: 1

Step: 100m

Receive Analog Gain

UHD: USRP Source
Samp Rate (Sps): 5M
ChO: Center Freq (Hz): 100M
ChO: Gain Value: 700m
ChoO: Gain Type: Normalized
ChO: Antenna: RX2

—1

QT GUI Frequency Sink
FFT Size: 4.096k
Center Frequency (Hz): 100
Bandwidth (Hz): 5M

Carrying Information

e Frequency, Amplitude, and Phase can all be changed over time
o This change change of the signal is Modulation

Amplitude Modulation

e Changing the amplitude of a “carrier” wave at a fixed frequency

A Amplitude

AM Signal

Signal

ANNANANNNNN

R RVAVAVAVAVAVAVAVAVAY

https://en.wikipedia.org/wiki/Amplitude_modulation

Time

Time

LAl

Em»

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 40
Amplitude: 500m
Offset: 1

QT GUI Range
ID: ch2_amplitude
Label: Channel 2 Amplitude
Default Value: 500m
Start: 0
Stop: 2
Step: 10m

QT GUI Range
ID: ch2_frequency
Label: Channel 2 Frequency
Default Value: 40

Throttle
Sample Rate: 32k

Yy

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No
Stem Plot: False

QT GUI Range
ID: ch2_amplitude
Label: Channel 2 Amplitude
Default Value: 500m
Start: 0
Stop: 2
Step: 10m

QT GUI Range
ID: ch2_frequency
Label: Channel 2 Frequency
Default Value: 40

Start: 0

Stop: 32k

Step: 1

Signal Source
Sample Rate: 32k
Waveform: Cosine
D Frequency: 1k
Amplitude: 1
Offset: 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
D Frequency: 40
Amplitude: 500m
Offset: 1

am_demo.grc

Throttle
Sample Rate: 32k

Sample Rate: 32k

https://en.wikipedia.org/wiki/Amplitude_modulation

Autoscale: No
Stem Plot: False

QT GUI Time Sink
Number of Points: 1.024k

Frequency Modulation

' ' NAAANAAAAAAAAAANAAAANANAANNDD
® Changing the frequency of a carrier wave. HHHHHHHHHHHHHHH
e Either discrete steps (Frequency Shift Keying)
e Or continuous (Broadcast FM) ' FM wave

LAMALAAA A A AR A A AAGAMARL ¢
N RvARVAN T RvARVAN

Variable
ID: samp_rate
Value: 1M

Signal Source
Sample Rate: 1M
Waveform: Saw Tooth
Frequency: 100m
Amplitude: 100
Offset: 0

=

_..I

QT GUI Time Sink
Name: Baseband Signal
Number of Points: 1.024k
Sample Rate: 1M
Autoscale: No

Baseband generation

>

Throttle

Sample Rate: 1M _ ’

FM Modulation Example

QT GUI Time Sink
Name: Modulated Signal

—bl Number of Points: 4.096k

Sample Rate: 1M
Autoscale: No

VCO (complex)

Sample Rate: 1M
Sensitivity: 628.3
Amplitude: 1

100 Hz change

Keep 1in N
—b
N: 40

Zoom in spectrum by 40x

for every 1 "unit” increase in baseband

QT GUI Frequency Sink
Name: Modulated Spectrum
FFT Size: 2.048k
Center Frequency (Hz): 0
Bandwidth (Hz): 25k

Narrow Band FM

® Popular analog modulation scheme for voice transmission

o Walkie Talkies, Land Mobile Radio
e Could implement each step of the modulation and demodulation
e GNU Radio already has it packaged

Options QT GUI Range QT GUI Range QT GUI Range QT GUI Range
ID: top_block ID: freq ID: rf_gain ID: audio_gain ID: sqch
Generate Options: QT GUI Label: RX Frequency Label: RF Gain Label: Audio Gain | | Label: Squelch Threshold
Default Value: 145.15 Default Value: 20 Default Value: 1 Default Value: -80
Variable Start: 144 Start: 0 Start: 0 Start: -110
ID: samp_rate Stop: 146 Stop: 40 Stop: 1 Stop: 0
Value: 32k Step: 1 Step: 1 Step: 100m Step: 1

RX Frequency RF Gain Volume

Narrow Band I
FM Receiver

Device Arguments: rtI=0
Sample Rate (sps): 2.4M
Cho: Frequency (Hz): 145.15M
ChO: Freq. Corr. (ppm): 0
Cho: DC Offset Mode: Off
Cho: IQ Balance Mode: Off
ChoO: Gain Mode: Manual

ChoO: RF Gain (dB): 20

Cho: IF Gain (dB): 0 2.4 MS/s to 32 kS/s
Cho: BB Gain (dB): 0

Squelch Threshold

File: ...esktop/example.cfile FFT Size: 4.096k
Unbuffered: Off Center Frequency (Hz): ...15M
Append file: Overwrite Bandwidth (Hz): 32k

Low Pass Filter
Decimation: 1
Gain: 1
I Sample Rate: 32k
Cutoff Freq: 8k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Rational Resampler
Interpolation: 1
Decimati 75

Simple Squeich
Threshold (dB): -80

=
4

Taps:
Fractional BW: 0

NBFM Receive

i

3::':::.:: :::e 32k Multiply Conat Audio Sink
Tau: 75u) Constant: 1 Sample Rate: 32KHz

Max Deviation: 5k

Audio Gain

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

QT GUI Frequency Sink
FFT Size: 4.096k
Center Frequency (Hz): 0
Bandwidth (Hz): 32k

NBFM Receiver - Notes

Soundcards will support different rates, 32 and 44.1 kHz pretty universal
e Thoughtful selection of SDR sampling rate makes decimation simple (1/75)
o Avoid large fractions (i.e. 1023/127) as they require LOTs of computation

e Squelchisin dB Full Scale, not dBm or dbW
o GNU Radio has no way of knowing an absolute power level
e NBFM block

o Can decimate, but usually set output and input sample rates to the same
o Deviation and pre-emphasis (tau) are dependent on the transmitter, default values will work in most cases

Underruns

e Soundcards and transmitters are hard-realtime systems, you must supply enough data to keep them

always running
o Failing to do so will cause an “underrun”
o In RF will produce gaps in the transmission and splatter
o In Audio will produce gaps and clicks

e GNU Radio will print “U” for underruns with USRPs and “aU” for soundcards (audio Underrun)

Two Clock Problem

e SDR Transmitter or receiver has an internal reference oscillator, so does a soundcard

e If the two references are not EXACTLY the same there’s a problem
o Source (producer) frequency > Sink (consumer) means too many samples are available, will build up a backlog of
data to handle
[In to Out delay will increase (Audio will lag)
o Source < Sink means not enough data is available, underruns will occur

Mitigating the Two-Clock Problem

e Use the same reference oscillator for source and sink sample clocks (ADCs & DACs)
o Great answer if using the same hardware for both, difficult (or impossible) with an SDR and soundcard
e Increase buffer sizes

o Store more data before telling output to start
o Reduces how often underruns occur
] I.E. run out of data once a minute rather than 0.1 seconds

NBFM Transmitter

Options QT GUI Range QT GUI Range
ID: top_block ID: rf_gain ID: freq
Generate Options: QT GUI Label: TX RF Gain Label: TX Frequency
Default Value: 50| | Default Value: 145.15
= Start: 0 Start: 144

Variable Stop: 60 Stop: 146
IDs somphtale Step: 1 Step: 100m
Value: 44.1k

D B?ndtli’:s.leilter Low Pass Filter Q’: GUI Frequency Sink
Gef't"; n: NBFM Transmit Decimation: 1 > FFT Size: 4.096k
. S::l‘;)lﬂ et Audio Rate: 44.1k Gain: 300m Center.Fnaquem:y (Hz): 145.15
; 5 2 Quadrature Rate: 44.1k Sample Rate: 44.1k Bandwidth (Hz): 44.1k
:lle. ...te.sty_mblt_uloo,wav i :ov:‘ ‘i:u::of; I;r;q..zsio =[] e [—»[] Cartolt Frag Ak
epeat: Yes T"_‘Qnsmon widt:: o Max Deviation: 6k Transition Width: 1k T ETTEE
. 3 2 Preemphasis High Corner Freq: -1 Window: Hamming Q. g
Pre-recorded audio Window: Hamming Beta: 6.76 FFT Size: 4.096k
Beta: 6.76 T Center Frequency (Hz): 145.15
Bandwidth (Hz): 44.1k

Simulate HT audio

UHD: USRP Sink
Device Address: ser...30A3341
Sync: unknown PPS

D Samp Rate (Sps): 4.41M

l ChoO: Center Freq (Hz): ...15M
ChoO: Gain Value: 50

ChO: Antenna: TX/RX

TSB tag name:

Rational Resampler
Interpolation: 100
Decimation: 1

Taps:
Fractional BW: 0

NBFM Transmitter - Notes

USRP hardware sink sets transmit frequency, RF gain, and expected sample rate
o USRP B200 (my demo hardware) is very flexible in sample rates, usually hardware will support specific rates
e Software interpolation/decimation will have sharper (better) filtering than FPGA or analog filters
o This is a generalization but usually true
o Interpolating by 100x means we have a clean signal but still very manageable sample rate (4.41 MS/s, easy for
USB)

e Use the time and frequency sinks to plot signals at different points (think spectrum analyzer and
oscilloscopes when debugging)
e Confirm functionality off the air before including hardware (simulation)
FM is forgiving with filtering
o Accidentally generated 6 kHz deviation, filtered to 4k Hz, received with 5 kHz, still works
Partially thanks to filter transition bandwidth

Useful Tips

e Test/develop using a pre-recorded audio file

o

o

Expected format is 16 bit real valued samples
Sample rate chosen as 32 kHz to match what a soundcard (Mic in) would likely generate

Add comments

o

Text box in the “Advanced” tab of each block

Use variables and sliders (“Range” in QT”

o

Lets you experiment quickly with values to hand tune performance

Programming Languages

o

e GNU Radio has a core written in C++

The main engine and all default blocks are C++

Python is wrapped around the C++

o

o

o

Generally considered more experimenter friendly
Only small performance hit as main work is done in C++ land

e GRCis entirely written in Python

But again, the engine is C++, so best of both worlds

Python Block

® Lets draw back the curtain and peek at the insides
e The “Embedded Python Block” lets you add custom code to a GRC flowgraph very easily
o Code is stored in the .grc file

O Default template supplies basic features

‘ Q python|
v Core
Embedded Python Block v Misc
Example Param: 1 Python Block
Python Module

Embedded Python Block

e Add a “Python Block” to the flowgraph, open it and click “Open in Editor” and use the Default
e The template has all the main features of a GNU Radio block setup already

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to init will
be the parameters. All of them are required to have default values!

numpy =5 np
om gnuradio import gr

class blk(gr.sync block): # other base classes are basic block, decim block, interp block
"""Embedded Python Block example - a simple multiply const"""

def init_ (self, example param=1.0): # only default arguments here
""rarguments to this function show up as parameters in GRC"""
gr.sync block. init (
self,
name="'Embedded Python Block', # will show up in GRC
in_sig=[np.complex64],
out sig=[np.complex64]

1f an attribute with the same name as a parameter is found,
a callback is registered (properties work, too).
self.example param = example param

def work(self, input items, output items):

"vrexample: multiply with constant"""

output items[0][:] = input items[0] * self.example param
return len(output items[0])

Headers and Includes

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to init will
be the parameters. All of them are required to have default values!

‘ numpy @s np
rom gnuradio import gr

The red text surrounded by quotes is a comment explaining how the template works
The import lines pull in code from gnuradio and numpy

o numpy is a Python library of math functions that GNU Radio uses extensively
You could add more imports to use other libraries

Class and Initialization

class blk(gr.sync block): # other base classes are basic block, decim block, interp block
"""Embedded Python Block example - a simple multiply const"""

def init (self, example param=1.0): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block. init (
self,
name="'Embedded Python Block', # will show up in GRC
in sig=[np.complex64],
out sig=[np.complex64]

v~ . o . “ e . . . ~

e GNU Radio has several types (or “classes”) of blocks
o We're using a sync block since input and output rates are the same (synchronous)
® The next comment will appear in the block documentation tab
The “__init__” function setups (initializes) our block
o We have one parameter called example_param with a default value of 1.0

Block Initialization

class blk(gr.sync block): # other base classes are basic block, decim block,

i interp block
"""Embedded Python Block example - a simple multiply const"""

def init (self, example param=1.0): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block. init (
self,
name="'Embedded Python Block', # will show up in GRC
in sig=[np.complex64],
out sig=[np.complex64]

v~ . o . “ e . . . ~

e GNU Radio already knows a lot about blocks. We just have to fill in the specific details by calling
gr.sync_block.__init(....)
o name is just for humans
® in_sig/out_sigis the “signature” of the input/output
o How many channels, what type of data (1 channel of complex data)
O The data types are numpy since this is Python

Block Initialization - Continued i

® in_sig=[np.complex64, np.float32] would be 1 channel complex and 1 channel real floats
e If you want to be able to change a value while the flowgraph is running (with a Range slider for
instance) then create a “class attribute” like the following:

if an attribute with the same name as a parameter is found,
a callback is registered (properties work, too).

self.example param = example param 8 oy blodk 0
Code Openin Editor
Example Param 1.0

® GRC will automatically add code to update the value correctly

O Only values with an underline in GRC can be changed at runtime

Doing Work on Samples

def work(self, input items, output items):
"""example: multiply with constant"""
output items[O][:] = input items[0] * self.example param
return len(output items[0])

e The main purpose of most blocks is to do something with or to samples

o GNU Radio will call the work function with a bunch of input samples and a place to put the output samples
e The default template multiplies each sample by a value (example_param)
e We need to tell GNU Radio how many samples we’ve produced

o In this case we’ve used all the input to make the same number of output samples
o The len function gives the length of the output_items array, so we return that number to GNU Radio’s engine

Clearly some Python knowledge is needed, but most of the heavy lifting already done

DC Offset Example

e Same template but cleaned up

e Let’sintroduce a DC component to the signal
o Usually a terrible idea
o Could have used an Add Const block

® © Properties: Add Const

‘General Advanced Documentation

ID blocks_add_const_vxx_0
10 Type Complex ~
Constant (dc_term + dc_term*1j)

Vec Length 1

Add Const
Constant: 100m+100mj

F

DC Blocker
Length: 32
Long Form: True

Trivia:

Can remove a DC offset using the DC Blocker

DC Offset Test Setup

Options
ID: top_block
Generate Options: QT GUI

Variable Variable
ID: samp_rate ID: tone
Value: 32k Value: 2k

Variable
ID: dc_term
Value: 100m

Signal Source
Sample Rate: 32k

/.

Amplitude: 1
Offset: 0

Basic testing setup with an Embedded Python Block

Waveform: Cosine Throttle
Frequency: 2k l ! # Sample Rate: 32k

l FFT Size: 1.024k

QT GUI Frequency Sink
Name: Original Spectrum

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

_M

Embedded Python Block
Example Param: 1

QT GUI Time Sink
Number of Points: 32
Sample Rate: 32k
Autoscale: No

l FFT Size: 1.024k

QT GUI Frequency Sink
Name: DC Added Spectrum

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

LMport numpy as np
from gnuradio import gr

class blk(gr.sync block):
Block Documentation
"""DC Addition Block - Surely more is better!"""

def init (self, dc term=0.1): # One parameter

gr.sync block. init (
self,
name='DC Addition', # Will show up in GRC
in sig=[np.complex64], # Complex float 32 bit pairs
out sig=[np.complex64] # Complex float 32 bit pairs

)
self.dc _term = dc_term
def work(self, input items, output items):
Add the value of "dc term" to the I and Q parts of the signal
For example: output = input + (0.1 + jO.1)
output items[0][:] = input items[0] + np.complex64(self.dc term+self.dc term*1j)

Tell GNU Radio's scheduler how many samples we are outputting
return len(output items[0])

DC Offset Results

Options
. ID: python_block_demo

e Looks like a real block! e b

Author: Derek Kozel

Generate Options: QT GUI

Variable Variable Variable -
ID: samp_rate || ID: tone ID: dc_term QT GUI Ifr?quemy Sink
Value: 32k Value: 2k || Value: 100m Name: Original Spectrum

.‘l FFT Size: 1.024k
Center Frequency (Hz): 0
Bandwidth (Hz): 32k

Signal Source
Sample Rate: 32k

Waveform: Cosine Throttle QT GUI Time Sink
[Frequency: 2k l ’ Sample Rate: 32k > Number of Points: 32
Amplitude: 1 DC Addition » ple Rate: 32k

Offset: 0 Dc Term: 100m Autoscale: No

Python Block
Adds the DC Term to | and Q QT GUI Frequency Sink
Name: DC Added Spectrum
L[| FFT size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

DC Offset Results

DC Offset clearly visible in time and frequency

® © © Python Block Demo

- Real{Original}
1
- Imaginary{Original}
- Real{DC Added}
0.5
° - Imaginary{DC Added}
°
2
1}
S o
a
E
<
05
44
r - T T T r T T T T 1
0 0.2 0.4 0.6 0.8 1
Time (ms)
Original Spectrum DC Added Spectrum
0 0
@ 50 @ 50
2 2
= =
8 §
@ 100 @ 100
= =
S S
=~ L
[3
@ -150 @ 150
200, T T T T T T T =200 T T T T T T T
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 -15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz) Frequency (kHz)

Quick Tips

Click on the line labels in the Time plot to hide or show a particular line

o Works on other visual sinks too

Middle mouse click on a QT plot to bring up a menu of options.

Enable a Control Panel in the Advanced Tab

Relative Gain (dB)

DC Added Spectrum

-50 -

-100

-150

-200 -

T T T T T
-15.00 -10.00 -5.00 0.00 5.00
Frequency (kHz)

T T
10.00 15.00

B start
O Grid
™ Axis Labels

Real{Original}

04 I
Time (ms)

Trace Options
Max Hold

Min Hold

:trum

Avg:
Axis Options
Grid
~ Axis Labels
Y Range: +|-
ReflLevel: |+ || -
Autoscale
FFT
1024 M
Blackman-harris ~ \
Trigger
Free ¥
Level: +] -

Extras
Stop

Imaginary{Original}
Real{DC Added}
Imaginary{DC Added}
Sample Rate
O Auto Scale
Save
Number of Points
O Stem Plot
O Semilog X
O Semilog Y
Trigger
O Control Panel

v v v v

& -150

Us

e A bit spread out and wanting in depth in spots

er Manual and Documentation

User Manual: www.gnuradio.org/doc/doxygen
o Generated from the C++
o Useful for finding out more about blocks
o Talks about the design of the core engine and code

Python Manual: www.gnuradio.org/doc/sphinx

o Generated from the Python
o Does not cover many of the topics in main manual
o Likely to be combined with the C++ in the next year

http://www.gnuradio.org/doc/doxygen
http://www.gnuradio.org/doc/sphinx

User Manual and Documentation

e Wiki: http://wiki.gnuradio.org
o Several sets of tutorials

o Presentations from other classes and events
o Working groups and developer info
o GNU Radio Conference info

[Links to videos and slides from the talks

Lots of outdated pages, getting cleaner over time

http://wiki.gnuradio.org

Main Website

www.gnuradio.org
e Blog
o Short and long posts about significant events
® Releases
o Description of changes in new versions
Links to everything on the previous page

Phase Modulation

e Introduce changes in the carrier’s phase to signal information

W/\M/\/\M/\/\
A

rrrrrrrrrrrrrrrr

W\M Ty
FVVVW VYV

Amateur Radio History

1896 - Marconi transmits and receives Morse Code
over 2 km on Salisbury Plain

1897 - Marconi transmits to Ireland from Lavernock
Point just south of Cardiff

1913 - The London Wireless Club is founded, becomes
the Radio Society of Great Britain later

1923 - First two way contact between UK and US

Amateur Radio History

1961 - OSCAR 1 launched, the first Orbiting Satellite Carrying Amateur Radio
2003 - Morse code requirement dropped in the UK
2009 - AMSAT-DL successfully bounces signal off Venus

2018 - DSLWP satellite launched into moon orbit

https://en.wikipedia.org/wiki/Amateur_radio_satellite

Spectrum Access

Licenses granted by Ofcom (National Regulator) give access to 100s of MHz of spectrum
Bands from 135 kHz to 250 GHz
Up to 400 Watts of output power (+antenna gain!)

Intended for experimental use, to promote radio skills, and international good will
o Commercial applications not allowed

https://en.wikipedia.org/wiki/Amateur_radio_satellite

ocial - On the air

http://www.gb7cd.co.uk/Coverage.html

HAM RADIO

14PRS

Social/Learning - Conventions

e Numerous events in the UK and around the world

o Radio Society of Great Britain Convention - Milton Keynes - October 11-13 FRIEDRICHSHAFEN

o HAMRADIO - Friedrichshafen, Germany - June 21-23
e UK Microwave Group

o Regular Roundtables around the UK
o Probable event here in Cardiff in March

RSGB 2018

Convention

Thanks for Coming

Questions?

e The latest version of these slides can always be found at
http://www.derekkozel.com/talks

e Twitter: @derekkozel
e Email: derek@bitstovolts.com

e Slides are licenced as Creative Commons Attribution-ShareAlike 4.0 International
o https://creativecommons.org/licenses/by-sa/4.0
e Examples are GNU General Public License v3.0 or later

@ ®0

http://www.derekkozel.com/talks
https://creativecommons.org/licenses/by-sa/4.0/

