FPGA Digital Signal Processing

Derek Kozel

July 15, 2017

1. Field Programmable Gate Arrays (FPGAs)

- 2. FPGA Programming Options
- 3. Common DSP Elements
- 4. RF Network on Chip
- 5. Applications

- Electrical and Computer Engineering
- US Extra Licence AG6PO
- Amateur Radio in University (W3VC, W6CMU)
- Radio at work
 - Distributed sensor networks
 - SDR Cellular basestations
 - General Purpose SDR (Ettus)
- Living in Cardiff, Wales, UK, Europe, Earth

Field Programmable Gate Arrays (FPGAs)

WHAT ARE FPGAS

- Integrated Circuits containing a complex array of logic cells, memory, DSP units, and optional extra interfaces
- Logic operations can be reprogrammed repeatedly
- Slower than dedicated ICs, but flexible like software

WHY USE FPGAS?

- Best of high bandwidth frontend, low datarate to host
- Can be energy efficient vs CPUs or GPUs
- Very good at realtime stream processing

FPGA INSIDES

- Logic resources are grouped into slices (Configurable Logic Blocks)
 - Look Up Tables (LUT)
 - Flip-Flips
 - Multiplexers (Muxes)
- Block RAM: configurable memory modules
- DSP Slice: add/subtract, multiply, accumulate, magic

FPGA Programming Options

[fragile]

- (System)Verilog and VHDL
- PyHDL, SystemC, ...

	VHDL:		Verilog:
2	process ({S0,S1},A,B,C,D)	1	
3	begin	2	
4	case (S0,S1), is	3	always @({S0,S1}, A, B, C, D)
5	when "00" => Y <= A;	4	case ({S0,S1})
6	when "01" => Y <= B;	5	2*b00: Y = A;
7	when "10" => Y <= C;	6	2'b01: Y = B;
8	when "11" => Y <= D;	7	2'b10: Y = C;
9	when others => Y <= A;	8	2'b11: Y = D;
10	end case;	9	endcase
11	end process;	10	

• "Compile" C, C++, or SystemC to an FPGA bitstream

Source: Vivado Design Suite User Guide High-Level Synthesis UG902

LABVIEW FPGA

- Graphical Block based library of IP
- Generates FPGA and host code

MATLAB SIMULINK

- Graphical environment with IP generators for a variety of DSP operations
- Can synthesize the FPGA image along with host code

Common DSP Elements

FILTERS

- Finite Impulse Response (FIR) Filter
- Halfband Filter
 - Symmetrical coefficients allow for a 50% smaller filter

RATE CHANGES

- Interpolation and Decimation
 - Reduces the sample rate the host must handle
 - Decimation can improve SNR

Cascaded-Integrator-Comb Filter

- Optimized FIR filter
- Allows for flexible decimation (ie divide by 1-255)
- Can work as a moving average as well

RATE CHANGES - CIC

Cascaded-Integrator-Comb Filter

- Has poor filter roll off at odd rates
- A compensation filter can be added to reduce the impact

- CORDIC
- Quarter Rate Downconverter

RF Network on Chip

RFNOC

- FPGA data flow architecture to simplify DSP development and use
- Standard AXI interface for data processing
- Software API for register access
- Allows for runtime reconfiguration

- $\cdot\,$ Better to move computation into the FPGA
- CPU usage savings and a 50% datarate reduction to the host

RFNOC ARCHITECTURE

- Reconfigurable, flexible, "simple" API
- Framework handles packetization, access to registers

.

- A collection of Computation Engine blocks included in UHD and GNU Radio
- Some common blocks
 - Digital Down Converter, Digital Up Converter, FFT, FIR filter, Signal Generator, Vector IIR
- Basics
 - Digital Gain, Keep 1 in N, Log Power, Split Stream, DmaFIFO, Adder/Subtractor
- Modulation components
 - OFDM Sync, Equalizer, Constellation Demodulator

Applications

FOSPHOR

- Realtime Spectrum Analyzer application
- Developed by Sylvain Manaut
- FPGA calculates FFTs and heatmap
- Massively reduced throughput to host, minimal cpu load

- Sponsored by Ettus Research and Xilinx
- USD \$10,000 prize, hardware prizes for runners up
- Many entries, three finalists

ATSC RECEPTION

- Demodulating digital television in the FPGA
- Developed by:
 - · Andrew Valenzuela Lanez | andrew.lanez@navy.mil
 - · Sachin Bharadwaj Sundramurthy | sbharad@eng.ucsd.edu
 - Alireza Khodamoradi | alirezak@eng.ucsd.edu

WIDE BAND CHANNEL SOUNDER

- Characterizing the properties of an RF link
- Developed by:
 - · Bhargav Gokalgandhi bvg8@scarletmail.rutgers.edu
 - Prasanthi Maddala prasanti@winlab.rutgers.edu
 - Ivan Seskar seskar@winlab.rutgers.edu

- Neural Network based DSP
- Developed by:
 - EJ Kreinar ejkreinar@gmail.com

Questions?

The latest version of these slides can always be found at http://www.derekkozel.com/talks

@derekkozel

GNU Radio Conference is being held in San Diego in September! http://www.gnuradio.org AMSAT's Phase 4B satellite and groundstation will likely use FPGA based SDRs! https://phase4ground.github.io/ The presentation was created using XeTeX and Beamer using the Metropolis theme.

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

