
Software Defined Radio and
Digital Signal Processing

Cardiff University - November 7, 2018

Derek Kozel

● Radio Amateur since second year of university

○ UK Advanced license MW0LNA, US Extra K0ZEL

● Moved from the San Francisco Bay Area to Cardiff in April 2017

● Bachelors and Masters in ECE & Public Policy at Carnegie Mellon University

● Worked at Range Networks, SpaceX, Ettus Research (NI)

● Currently a PhD at Cardiff University in the Centre for High Frequency Engineering

● GNU Radio Project Officer

Intro to Radio

Electromagnetic Waves

● Electric and Magnetic energy

● Can bounce, bend, and generally confuse

https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry_Textbook_Maps/Map%3A_Analytical_Chemistry_2.0_(Harvey)/10_Spectroscopic_Methods/10.1%3A_Overview_of_Spectroscopy

Properties of a wave

● Frequency
○ Number of cycles per second (Hertz)

● Wavelength
○ Distance between start and end of a cycle

https://en.wikipedia.org/wiki/Phase_(waves)

● Amplitude
○ The magnitude or strength of the wave

● Phase
○ The offset of the wave with respect to

another wave

https://en.wikipedia.org/wiki/File:Sine_voltage.svghttps://en.wikipedia.org/wiki/Wavelength

Intro to GNU Radio

● A framework and set of libraries to build and run digital signal processing applications, primarily

software defined radio ones

● Started in 2001

● Libre and open source

● Written in C++ and Python primarily

● Available on Linux, Windows, and Mac

● Used by a very wide variety of users
○ commerical, hobbyist, government

http://superkuh.com/rtlsdr.html

GNU Radio Companion

Automatic Code Generation

● The graphical UI is generating Python code
○ Or C++ in the latest version

● We’ll look quickly under the hood later

Data Types

● Samples and data comes in different digital formats

● Semantic differences
○ Complex vs Real samples

○ Number vs Letters

● Size differences
○ 8 bits vs 32 bits

Data Types

● Have to connect matching types

● GRC will warn you if there’s a mismatch

● In the end, bits are bits
○ Computer will interpret them as you tell it to

Digital Signal Processing

Time Domain

● Amplitude values over time

● Signals are continuous in the air or wire

● Signals are digitized by sampling the current value many times

Continuous Signal (it’s a lie!) Discrete (sampled) Signal

Exploring Waves

● Setup a flowgraph with controls for
○ Phase

○ Frequency

○ Amplitude

Delay value:

int((samp_rate/ch2_frequency) * (ch2_phase/360.0))

Throttle Block

● GNU Radio will process data as fast as possible

● Hardware (Analog to Digital or Digital to Analog converters) will have a set sample rate

● Simulation only doesn’t

● Add one (and only one!) throttle block to the flowgraph
○ Has a timer inside that tries to match the average throughput to the sample rate

Delay value:

int((samp_rate/ch2_frequency) * (ch2_phase/360.0))

waveform_demo.grc

Discrete Sampling

● Usually data is displayed as if it were continuous
○ Easier to visualize

○ Mostly accurate as long as you follow Nyquist’s Sampling Law

● Can also display actual data points
○ Select Stem Plot under the Config menu in QT GUI Time Sink

stem_plot.grc

Complex Sampling

● Hard to make fast ADC/DACs

● Also ambiguities in frequency are real(ly painful)

● When mixing a signal with a sinewave crossing zero you

lose all the information!

● Solution: Split the signal in two, mix with a sine and

cosine, sample each result at the same time
○ Twice the information, all of it useful

○ Not cheating Nyquist

○ Bandwidth = Sample Rate

stem_plot.grc

Frequency Domain

● Time domain signals contain energy at certain frequencies

● They can be decomposed into the sum of many sine waves with different amplitudes

https://irenevigueguix.wordpress.com/2017/02/06/understanding-the-fourier-transform/

Frequency Sink

frequency_plot.grc

Simple Receiver

basic_rx.grc

Carrying Information

● Frequency, Amplitude, and Phase can all be changed over time
○ This change change of the signal is Modulation

Amplitude Modulation

● Changing the amplitude of a “carrier” wave at a fixed frequency

https://en.wikipedia.org/wiki/Amplitude_modulation

https://en.wikipedia.org/wiki/Amplitude_modulation

am_demo.grc

Frequency Modulation

● Changing the frequency of a carrier wave

● Either discrete steps (Frequency Shift Keying)

● Or continuous (Broadcast FM)

https://irenevigueguix.wordpress.com/2017/02/06/understanding-the-fourier-transform/

FM Modulation Example

Narrow Band FM

● Popular analog modulation scheme for voice transmission
○ Walkie Talkies, Land Mobile Radio

● Could implement each step of the modulation and demodulation

● GNU Radio already has it packaged

Narrow Band
FM Receiver

NBFM Receiver - Notes

● Soundcards will support different rates, 32 and 44.1 kHz pretty universal

● Thoughtful selection of SDR sampling rate makes decimation simple (1/75)
○ Avoid large fractions (i.e. 1023/127) as they require LOTs of computation

● Squelch is in dB Full Scale, not dBm or dbW
○ GNU Radio has no way of knowing an absolute power level

● NBFM block
○ Can decimate, but usually set output and input sample rates to the same

○ Deviation and pre-emphasis (tau) are dependent on the transmitter, default values will work in most cases

Underruns

● Soundcards and transmitters are hard-realtime systems, you must supply enough data to keep them

always running
○ Failing to do so will cause an “underrun”

○ In RF will produce gaps in the transmission and splatter

○ In Audio will produce gaps and clicks

● GNU Radio will print “U” for underruns with USRPs and “aU” for soundcards (audio Underrun)

Two Clock Problem

● SDR Transmitter or receiver has an internal reference oscillator, so does a soundcard

● If the two references are not EXACTLY the same there’s a problem
○ Source (producer) frequency > Sink (consumer) means too many samples are available, will build up a backlog of

data to handle

■ In to Out delay will increase (Audio will lag)

○ Source < Sink means not enough data is available, underruns will occur

Mitigating the Two-Clock Problem

● Use the same reference oscillator for source and sink sample clocks (ADCs & DACs)
○ Great answer if using the same hardware for both, difficult (or impossible) with an SDR and soundcard

● Increase buffer sizes
○ Store more data before telling output to start

○ Reduces how often underruns occur

■ I.E. run out of data once a minute rather than 0.1 seconds

NBFM Transmitter

NBFM Transmitter - Notes

● USRP hardware sink sets transmit frequency, RF gain, and expected sample rate
○ USRP B200 (my demo hardware) is very flexible in sample rates, usually hardware will support specific rates

● Software interpolation/decimation will have sharper (better) filtering than FPGA or analog filters
○ This is a generalization but usually true

○ Interpolating by 100x means we have a clean signal but still very manageable sample rate (4.41 MS/s, easy for

USB)

● Use the time and frequency sinks to plot signals at different points (think spectrum analyzer and

oscilloscopes when debugging)

● Confirm functionality off the air before including hardware (simulation)

● FM is forgiving with filtering
○ Accidentally generated 6 kHz deviation, filtered to 4k Hz, received with 5 kHz, still works

○ Partially thanks to filter transition bandwidth

Useful Tips

● Test/develop using a pre-recorded audio file
○ Expected format is 16 bit real valued samples

○ Sample rate chosen as 32 kHz to match what a soundcard (Mic in) would likely generate

● Add comments
○ Text box in the “Advanced” tab of each block

● Use variables and sliders (“Range” in QT”
○ Lets you experiment quickly with values to hand tune performance

Programming Languages

● GNU Radio has a core written in C++
○ The main engine and all default blocks are C++

● Python is wrapped around the C++
○ Generally considered more experimenter friendly

○ Only small performance hit as main work is done in C++ land

● GRC is entirely written in Python
○ But again, the engine is C++, so best of both worlds

Python Block

● Lets draw back the curtain and peek at the insides

● The “Embedded Python Block” lets you add custom code to a GRC flowgraph very easily
○ Code is stored in the .grc file

○ Default template supplies basic features

Embedded Python Block

● Add a “Python Block” to the flowgraph, open it and click “Open in Editor” and use the Default

● The template has all the main features of a GNU Radio block setup already

Headers and Includes

● The red text surrounded by quotes is a comment explaining how the template works

● The import lines pull in code from gnuradio and numpy
○ numpy is a Python library of math functions that GNU Radio uses extensively

● You could add more imports to use other libraries

Class and Initialization

● GNU Radio has several types (or “classes”) of blocks
○ We’re using a sync block since input and output rates are the same (synchronous)

● The next comment will appear in the block documentation tab

● The “__init__” function setups (initializes) our block
○ We have one parameter called example_param with a default value of 1.0

Block Initialization

● GNU Radio already knows a lot about blocks. We just have to fill in the specific details by calling

gr.sync_block.__init(….)
○ name is just for humans

● in_sig/out_sig is the “signature” of the input/output
○ How many channels, what type of data (1 channel of complex data)

○ The data types are numpy since this is Python

Block Initialization - Continued
● in_sig=[np.complex64, np.float32] would be 1 channel complex and 1 channel real floats

● If you want to be able to change a value while the flowgraph is running (with a Range slider for

instance) then create a “class attribute” like the following:

● GRC will automatically add code to update the value correctly

○ Only values with an underline in GRC can be changed at runtime

Doing Work on Samples

● The main purpose of most blocks is to do something with or to samples
○ GNU Radio will call the work function with a bunch of input samples and a place to put the output samples

● The default template multiplies each sample by a value (example_param)

● We need to tell GNU Radio how many samples we’ve produced
○ In this case we’ve used all the input to make the same number of output samples

○ The len function gives the length of the output_items array, so we return that number to GNU Radio’s engine

● Clearly some Python knowledge is needed, but most of the heavy lifting already done

DC Offset Example

● Same template but cleaned up

● Let’s introduce a DC component to the signal
○ Usually a terrible idea

○ Could have used an Add Const block

Trivia:

Can remove a DC offset using the DC Blocker

DC Offset Test Setup
● Basic testing setup with an Embedded Python Block

DC Offset Results

● Looks like a real block!

DC Offset Results

● DC Offset clearly visible in time and frequency

Quick Tips

● Click on the line labels in the Time plot to hide or show a particular line
○ Works on other visual sinks too

● Middle mouse click on a QT plot to bring up a menu of options.

● Enable a Control Panel in the Advanced Tab

User Manual and Documentation

● A bit spread out and wanting in depth in spots

● User Manual: www.gnuradio.org/doc/doxygen
○ Generated from the C++

○ Useful for finding out more about blocks

○ Talks about the design of the core engine and code

● Python Manual: www.gnuradio.org/doc/sphinx
○ Generated from the Python

○ Does not cover many of the topics in main manual

○ Likely to be combined with the C++ in the next year

http://www.gnuradio.org/doc/doxygen
http://www.gnuradio.org/doc/sphinx

User Manual and Documentation

● Wiki: http://wiki.gnuradio.org
○ Several sets of tutorials

○ Presentations from other classes and events

○ Working groups and developer info

○ GNU Radio Conference info

■ Links to videos and slides from the talks

○ Lots of outdated pages, getting cleaner over time

http://wiki.gnuradio.org

Main Website

● www.gnuradio.org

● Blog
○ Short and long posts about significant events

● Releases
○ Description of changes in new versions

● Links to everything on the previous page

Phase Modulation

● Introduce changes in the carrier’s phase to signal information

Introduction to Amateur
Radio

Amateur Radio History

1896 - Marconi transmits and receives Morse Code

over 2 km on Salisbury Plain

1897 - Marconi transmits to Ireland from Lavernock

Point just south of Cardiff

1913 - The London Wireless Club is founded, becomes

the Radio Society of Great Britain later

1923 - First two way contact between UK and US

Amateur Radio History

1961 - OSCAR 1 launched, the first Orbiting Satellite Carrying Amateur Radio

2003 - Morse code requirement dropped in the UK

2009 - AMSAT-DL successfully bounces signal off Venus

2018 - DSLWP satellite launched into moon orbit

https://en.wikipedia.org/wiki/Amateur_radio_satellite

Spectrum Access

● Licenses granted by Ofcom (National Regulator) give access to 100s of MHz of spectrum

● Bands from 135 kHz to 250 GHz

● Up to 400 Watts of output power (+antenna gain!)

● Intended for experimental use, to promote radio skills, and international good will
○ Commercial applications not allowed

https://en.wikipedia.org/wiki/Amateur_radio_satellite

Social - On the air

http://www.gb7cd.co.uk/Coverage.html

Social - Clubs/Societies

Social/Learning - Conventions

● Numerous events in the UK and around the world
○ Radio Society of Great Britain Convention - Milton Keynes - October 11-13

○ HAMRADIO - Friedrichshafen, Germany - June 21-23

● UK Microwave Group
○ Regular Roundtables around the UK

○ Probable event here in Cardiff in March

Wrapping Up

Thanks for Coming

● Questions?

● The latest version of these slides can always be found at

http://www.derekkozel.com/talks

● Twitter: @derekkozel

● Email: derek@bitstovolts.com

● Slides are licenced as Creative Commons Attribution-ShareAlike 4.0 International
○ https://creativecommons.org/licenses/by-sa/4.0/

● Examples are GNU General Public License v3.0 or later

http://www.derekkozel.com/talks
https://creativecommons.org/licenses/by-sa/4.0/

