Optimization of Digital Modulation Schemes using Evolutionary Algorithms

Introduction

- Derek Kozel
 - Masters in ECE from Carnegie Mellon
 - SpaceX, Range Networks, currently Ettus Research
 - Past research includes SDR and SDN based cellular systems, low power system on chip architecture, and evolutionary algorithms

Recognition and Thanks

- Original work done during my masters
- "Evolution of digital modulation schemes for radio systems" at GECCO 2014
- Co-Authors
 - Ervin Teng, Bob Iannucci, and Jason Lohn

GNU Radio Conference 2015

What is Evolutionary Computing?

- Subfield of artificial intelligence
- Continuous and combinatorial optimization
- Stochastic, optimal result not guaranteed
- Good for large, complex, search spaces

GNU Radio Conference 2015

Basic Flow

GNU Radio Conference 2015

Derek Kozel

Ettus Research[™] A National Instruments Company

Basic Flow

BEGIN

- INITIALIZE population with random candidate solutions
- EVALUATE each candidate
- REPEAT UNTIL (TERMINATION CONDITION is satisfied)
 - **1 SELECT parents**
 - 2 RECOMBINE pairs of parents
 - 3 MUTATE the resulting offspring
 - 4 EVALUATE new candidates
 - 5 SELECT individuals for the next generation

Components

- Representation
- Fitness Function
- Population
- Parent selection mechanism
- Variation operators
 - Mutation, Recombination, others
- Survivor selection mechanism

Representation

- Genotype
 - Physical representation
 - i.e. bit strings
- Phenotype
 - Logical meaning
 - i.e. ints, floats, coordinates on a chess board

GNU Radio Conference 2015

Fitness Functions

- Defining how good a solution is
 AKA Objective Function in optimization
- Can be a simple formula or a statistic from a complex simulation

Example 2D fitness landscape

GNU Radio Conference 2015

Population

 A pool of individual potential solutions (inputs)

Collection of phenotypes

- Can be divided up in different ways
 - Island
 - Age
 - Fitness
- Total of μ individuals

Parent Selection

- Parenthood not guaranteed
- Selection can be random, fitness based, deterministic, etc
- λ offspring are created for each generation

GNU Radio Conference 2015

Fitness Proportional Selection

Individuals are chosen to be parents with a probability proportional to their absolute fitness

$$p(individual \ i \ chosen) = rac{f_i}{\sum_{j=1}^{\mu} f_j}$$

 This means that individuals with high fitness dominate the population quickly

Derek Kozel

Premature convergence

Ranking Selection

 Individuals chosen as parents with a probability proportional to their relative fitnesses

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

	Fitness	Rank	P _{selFP}	P _{selLR} (s=2)	P _{selLR} (s=1.5)
А	1	1	0.1	0	0.167
В	5	3	0.5	0.67	0.5
С	4	2	0.4	0.33	0.33
Sum	10		1.0	1.0	1.0

GNU Radio Conference 2015

Variation Operators

- Used to create children different but related to the parents
- Operators apply to a certain number of parents (Arity)
 - Mutation is done to one individual at a time
 - Recombination takes two or more parents to make an child

Mutation

- Changes a single individual
- Bit flipping for bitstrings

- For each bit, flip with a probability p_m

- For numbers
 - For each value, add a random value with probability p_m
 - Reset to a random value with probability p_m

GNU Radio Conference 2015

Derek Kozel

Ettus

A National Instruments Company

Mutation continued

• Swapping

• Scramble, Insert, Inversion

GNU Radio Conference 2015

Recombination

• Crossover is the main operation

Survivor Selection

- Population is now μ parents and λ children
- Usually population remains constant over generations
- Must choose μ individuals from $\mu + \lambda$
 - Age based
 - Fitness based
- Sometimes desirable to preserve elites

Best n individuals guaranteed survival

Initialization

- Usually completely random generation
- Can incorporate domain specific knowledge
 - Choose known good answers
 - Introduces some bias to the search

GNU Radio Conference 2015

Termination Condition

- Prevent infinite or exhaustive searching
- N generations
- Absolute fitness threshold
- Minimum amount of change in fitness

GNU Radio Conference 2015

So it begins, now what?

- Exploration
- Exploitation
- Premature Convergence
 - Local Optimum

GNU Radio Conference 2015

PSK Constellations

- A mapping of input bits to physically transmittable signals
- Can be represented as a string of integers

Input Bits	I	Q
000	1.414	0
001	1	1
010	0	1.414
011	-1	1

Resea

A National Instruments Company

Setup

- Python implementations of algorithms
- Call GNU Radio simulation for fitness testing

A National Instruments Company

GNU Radio Conference 2015

Basic Evolutionary Strategy

- Create 20 random constellations (individuals)
- Mutate and combine to create 140 constellations (children)
- Evaluate their fitness (BER + fudge factors)
- Select 20 survivors

GNU Radio Conference 2015

Parameters

- 150 Generations
- Parent pool of 20 individuals
- Child pool of 140
 - 100 the product of mutation
 - 40 from recombination

GNU Radio Conference 2015

Basic ES Results

• Best Fitness: 0.6422

One Run

A National Instruments Company

Q Q

0

GNU Radio Conference 2015

Island Model

Galapagos Islands

- Population is divided with occasional migrations

- Run multiple populations in parallel
- Transfer small number of individuals when diversity converges on an island
- Use a fitness based survivor selection

GNU Radio Conference 2015

• Mean best fitness = 0.6369

Age Layered Population Structure

- Gregory Hornby (UC Santa Cruz)
- Divide population by age cohorts
- Move population onwards and re
- Restart lowest level each epoch

GNU Radio Conference 2015

ALPS Results

• Best fitness: 0.6140

A National Instruments Company

GNU Radio Conference 2015

Future Extensions

• Additional fitness tests

– Variety of SNR and channel condition tests

- Longer tests, more bits, over the air
- Add additional transmission parameters to individuals
- Improve simulation

– Framing, sync, complex channels

GNU Radio Conference 2015

https://github.com/dkozel/Evolving-Constellations

derek@derekkozel.com www.derekkozel.com/talks @derekkozel

GNU Radio Conference 2015